About the Speaker

• Undergraduate
 – BS in Business Administration
 – BS in Mortuary Science
 – MBA with emphasis in consultancy

• Medical School
 – Sanford School of Medicine (University of South Dakota)

• Residency
 – University of New Mexico (Internal Medicine)

• Fellowship
 – University of New Mexico (Pulmonary/Critical Care)

• Relevant Work Experience
 – Executive Director, Residential Care Facility for the Chronically Ill
 – Public Health (Primary/Specialty Medical Care Indigent)
 – Hospitalist (Acute and Critical Care)
 – Pulmonologist/Intensivist
Disclosures

• I have no financial disclosures
Goals and Objectives

- Understand the risk factors for ARDS
- Define ARDS and the impact of the Berlin Criteria
- Discuss the role of mechanical ventilation in profound hypoxemia
- Understand the role of neuromuscular blockade in the management of ARDS
- Discuss the role of prone positioning in the treatment of ARDS
- Define how timing of tracheostomy effects outcomes
- List ineffective or harmful therapies in ARDS
Grading of Recommendations

• 1 = Strong Recommendation
• 2 = Weak Recommendation

• A = Good evidence from randomized trials
• B = Moderate strength evidence from small randomized trial(s) or upgraded observational trials
• C = Low strength evidence, well-done observational trials with control randomized controlled trials
• D = Very low strength evidence, downgraded controlled studies or expert opinion
INTRODUCTION
Introduction

• Distinct type of hypoxemic respiratory failure
 – Abnormality of both lungs

• Acute, diffuse, inflammatory lung injury
 – Increased pulmonary vascular permeability
 – Increased lung weight
 – Loss of aerated tissue

• Pathology
 – Diffuse alveolar damage
 • Alveolar edema with or without focal hemorrhage, acute inflammation of the alveolar walls, and hyaline membranes
Microscopy of ARDS

Normal Alveoli
Microscopy of ARDS

Case 39: Adult respiratory distress syndrome

intra-alveolar oedema
Microscopy of ARDS

Case 39: Adult respiratory distress syndrome

- brightly eosinophilic hyaline membranes
- regenerative hyperplasia of Type 2 pneumocytes (examples)
Common Causes of ARDS

• DIRECT
 – Aspiration of gastric contents
 – Infectious pneumonia
 – Inhalation of toxic gas or aerosol
 – Lung contusion
 – Near-drowning
 – Fat emboli

• INDIRECT
 – Bacterial sepsis
 • Especially gram-negative
 – Trauma of a non-thoracic origin
 • Multiple fractures
 – Multiple blood transfusions
 – Pancreatitis
 – Opiate and other drug overdose
 • Heroin, methadone, barbiturates, salicylates
 – Disseminated intravascular coagulation
 – Other infectious causes
 – Snake bite
 – Cardiopulmonary bypass
Introduction

- Case-fatality rate decreased during the 1990’s
 - Still exceeds 30%

- No drug has proven beneficial in the prevention or management of ARDS

- Mainstay of therapy
 - Supportive
 - Improving gas exchange
 - Preventing complications
Introduction

• Diagnosis of ARDS
 – Chest X-ray
 • Accuracy of portable chest radiograph to detect ARDS is limited
 – CT Scan
 • High PPV and moderate NPV
 – Upper-lobe-predominant ground-glass attenuation (95.2%/47.5%)
 – Central-predominant ground-glass attenuation (92.3%/51.4%)
 – Central airspace consolidation (92.0%/50.0%)
Mortality Prediction and the Berlin Criteria

INTRODUCTION
Definition of ARDS

- 1994 to 2012
 - American-European Consensus Conference (AECC)

- Criteria
 - Acute onset of hypoxemia defined by partial pressure of arterial oxygen/fraction of inspired oxygen (PaO$_2$/FiO$_2$, or P/F) ratio of > 200, with
 - New bilateral infiltrates
 - Not attributable to heart failure as defined by pulmonary capillary wedge pressure (PCWP) (as measured by a Swan-Ganz catheter) of not more than 18 mmHg (or absence of suspected left atrial hypertension/cardiogenic pulmonary edema if PCWP was not available)
Definition of ARDS

2012
- European Society of Intensive Care Medicine
 - Expert panel to improve the reliability and validity of the ARDS definition → Berlin Criteria

Criteria
- Defining three categories of ARDs severity on the basis of P/F ratio
 - ≤ 300 and >200 “mild” ARDS (previously acute lung injury)
 - 100-200 “moderate” ARDS
 - <100 “severe” ARDS
- Defining “acute” onset of bilateral infiltrates as within 7 days of exposure to an ARDS risk factor or worsening respiratory symptoms
- More definitive chest radiograph criteria were provided
 - Bilateral infiltrates consistent with pulmonary edema and not fully explained by effusion, lobar/lung collapse, or nodules
 - Use of CT scan allowable
- Use of the PCWP for defining cardiogenic pulmonary edema was removed
- If a risk factor for ARDS is not identified
 - Some objective criteria of cardiac function
- Minimum use of PEEP of at least 5 cm H₂O on mechanical ventilation (or delivered by NIV only in the mild ARDS category) → assessing the severity of oxygenation impairment using the P/F ratio
Implications of Berlin Criteria

• Derived and validated
 – Variable which did not improve severity prediction were excluded
 • Lung compliance, radiographic severity, levels of PEEP, and exhaled minute ventilation

• Categorizing severity directed attention to most afflicted group

• Allowed for mortality prediction
 – Mild 27%
 – Moderate 32%
 – Severe 47%
MANAGEMENT OF HYPOXEMIA
Management of Hypoxemia

- Options for improving arterial oxygen saturations
 - Use of high fractions of inspired oxygen (FiO₂)
 - Decrease oxygen consumption
 - Improve oxygen delivery
 - Manipulate mechanical ventilator support

- Risk of high fractions of FiO₂
 - Absorptive atelectasis
 - Three gasses hold alveoli open (nitrogen, carbon dioxide and oxygen)
 - At ≥ 50% FiO₂ with small tidal volumes
 - Nitrogen is washed out (into venous system and released)
 - When oxygen is absorbed, little other gas to keep alveoli open
 - Oxygen toxicity
 - Oxygen damage from toxic oxygen species (free radicals) occurs within hours
 - Destroys type I alveolar cells
 - Proliferate type II alveolar cells → exudative stage → increase edema
 » Fluid build up increased V/Q mismatch → shunt
 - Goal is 50-60% range as soon as possible
Early versus Late Intubation

- Large multi-ICU prospective cohort study 2006-2011

- 457 patients with ARDS
 - 106 (23%) not intubated at time of diagnosis
 - Non-intubated patients had lower morbidity and severity of illness
 - However, mortality at 60 days was the same (36%) in both groups
 - Of 106 non-intubated patients
 - 56% required intubation within 3 days
 - Late intubation group had significantly higher 60-day mortality (56%) when compared to the early intubation group (36%; \(p < 0.03 \)) and patients never requiring intubation (26%; \(p = 0.002 \))
 - Increased mortality in the late intubation group persisted at 2-year-follow-up
 - Adjustments for baseline clinical and demographic differences did not change the results
MECHANICAL VENTILATION
Low Tidal Volume Ventilation

MECHANICAL VENTILATION
ARDS Net (Low Tidal Volume Ventilation)

- **ARMA Trial**
 - Compared 12 ml/kg (ideal body weight) and 6 ml/kg
 - Significant reduction in mortality with low tidal volume ventilation
 - 38% to 31%

- **Meta-analysis of six randomized trials (2009)**
 - Low tidal volume ventilation had significantly improved 28 day mortality (27.4 versus 37%) and hospital mortality (34.5 versus 43.2 percent) when compared to conventional mechanical ventilation
Low Tidal Volume Ventilation (LTVV)

• More recent studies have applied low tidal volume ventilation to at risk patients
 – Surgical patients

• A trial of intraoperative low-tidal-volume ventilation in abdominal surgery, NEJM (2013)
 – “Prophylactic“ protective ventilation
 – Improved clinical outcomes in intermediate- and high-risk patients undergoing abdominal surgery
Concerns for LTVV

- Low tidal volume ventilation is well tolerated and not associated with any clinically important adverse outcomes

- Concerns
 - Auto-PEEP
 - Theory → Higher RR used to maintain minute ventilation during LTVV may create auto-PEEP
 - Subgroup analysis reveals negligible quantities of auto-PEEP between two ventilation groups
 - Sedation
 - Work of breathing and asynchrony may increase need for sedation
 - Post-hoc analysis showed no significant differences in the percentage of days patients received sedatives, opioids, or neuromuscular blockage between the two ventilation groups
Potential Mechanisms of Protection

- **Barotrauma**
 - High pressures to lungs resulting in injury

- **Volutrauma**
 - High tidal volumes inducing lung stretch resulting in injury

- **Hemodynamics**
 - Less over distention improving venous return

- **Atelectrauma**
 - Lack of maintenance of open lung units has the potential to exacerbate lung injury from opening and closing of lung units
 - Studies show higher PEEP in moderate ARDS improved outcomes

- **Biotrauma**
 - Activation of cellular signaling cascades resulting in lung inflammation from stretching lung unit
Implementation

- Goal plateau airway pressure checked q4 hours and after every PEEP or tidal volume change
- Goal plateau airway pressure is 30 cm H₂O (ARMA Trial)
 - Goal plateau airway pressure in practice is < 28 cm H₂O
 - Decreases alveolar over distension and makes it unlikely to induce lung strain
- Goal for PaO₂ is between 55 and 80 mmHg
 - SpO₂ between 88-95%
- Permissive hypercapnia allowed

- 2016 multicenter international prospective cohort study (3,022 patients)
 - ARDS recognized in 60% patients
 - < 66% received a tidal volume of 8 mL/kg PBW
Spontaneous Breathing in ARDS

- Complete inactivity of the diaphragm results in disuse atrophy and muscle weakness
 - Ventilator-induced diaphragmatic dysfunction (VIDD)
 - Occurs in as little as 18-24 hours of MV
 - Can contribute to difficulty weaning and poorer prognosis

- Experimental studies → Assist-control ventilation or pressure support ventilation can reduce VIDD
 - Timing of allowing spontaneous breathing has been debated

- Experimental lung injury models in ARDS
 - Reduced markers of lung inflammation and epithelial cell damage
 - Improved tidal ventilation gas exchange and oxygen delivery
 - Increased systemic blood flow
Spontaneous Breathing in ARDS

• 2005 Study by Neumann et al.
 – Partial ventilator support with airway pressure release ventilation (APRV) compared to standard ventilation
 • Promoted alveolar recruitment in distal peri-diaphragmatic areas
 • Improved ventilation/perfusion matching and gas exchange
 • Increased oxygen delivery
 – Limited to those with mild to moderate ARDS

• 2013 Study by Yoshida and co-workers
 – Spontaneous breathing in a model of severe lung injury caused
 • High transpulmonary pressure
 • Worsened oxygenation and lung damage
 • Caused local injury by internal redistribution of volume
Considerations in Spontaneous Breathing

• Real transpulmonary pressures becomes the sum of the pressure generated by the ventilator and by the patient's respiratory muscles
 – Pressure targeted modes
 • Pressure assist/control ventilation and pressure support ventilation
 • True driving pressure is higher than the airway pressure (Paw)
 – Volume controlled ventilation
 • Transpulmonary pressure and tidal volumes are kept constant irrespective of muscular pressure

• Currently ongoing large multicenter randomized controlled study
 – Early Spontaneous Breathing in Acute Respiratory Distress Syndrome (BiRDS)
Not Standards of Care

- Proportional assist ventilation
- Neurally adjusted ventilator assist
- Noisy pressure support ventilation
PEEP in ARDS

- ARDS characterized by a major loss in lung volume
 - Alveolar flooding
 - Atelectasis
 - Consolidation
- PEEP is used to reverse hypoxemia and atelectasis
- Goal of PEEP is to recruit (or maintain recruitment of) atelectatic or flooded lung

- Three large multicenter randomized trials have tested higher versus lower PEEP while limiting tidal volumes in all patients
 - ALVEOLI Trial (Assessment of Low tidal Volume and elevated End-expiratory volume to Obviate Lung Injury)
 - ExPress Trial (Expiratory Pressure)
 - LOVS Trial (Lung Open Ventilation Study)
PEEP in ARDS Trial Results

- No significant improvement in mortality
- Express trial found an improvement in ventilator-free days

- Meta-analysis of the trials
 - Modest reduction in mortality for patients with moderate and severe ARDS in the higher PEEP arms
Physiological Consequences of PEEP

• Increase end-expiratory lung volume (EELV)
 – Highly recruitable patient
 • Substantial part of increased EELV due to reopening of previously collapsed lung tissue (recruitment)
 – Poorly recruitable patient
 • Most of the increase is generated by inflation of previously open lung tissue
 – Leads to overdistention \(\rightarrow \) risk of volutrauma
 – Effectiveness of PEEP based on patient characteristics

• Clinical trials suggest applying PEEP without assessment of recruitability may affect improving survival
 – This may explain the small effects of the previous trials
Techniques to Determine Proper PEEP

- Multiple pressure-volume curves
- Measurement of lung volume
- Use of P_{oes} and transpulmonary pressure
- Lung ultrasound
- Physiological tests based on oxygenation
Techniques to Determine Proper PEEP

- **Multiple pressure-volume curves**
 - Plotting several pressure-volume curves at different PEEP levels on the same volume axis
 - Measuring or estimating the volume above functional residual capacity
- Measurement of lung volume
- Use of P_{oes} and transpulmonary pressure
- Lung ultrasound
- Physiological tests based on oxygenation
Techniques to Determine Proper PEEP

- **Multiple pressure-volume curves**
- **Measurement of lung volume**
 - Nitrogen washout/wash-in technique
 - Good correlation with helium dilution or CT scans
 - Direct measurement of lung volume
 - FRC and/or EELV at each PEEP level and calculation of the strain
- Use of Poes and transpulmonary pressure
- Lung ultrasound
- Physiological tests based on oxygenation
Techniques to Determine Proper PEEP

- Multiple pressure-volume curves
- Measurement of lung volume
- **Use of P_{oes} and transpulmonary pressure**
 - Estimate pleural pressure and then estimating transpulmonary pressure at end-inspiration and expiration from the difference between P_{plat} or PEEP and esophageal pressures
 - Transpulmonary pressure = $P_{aw} - P_{oes}$
 - **EPVent Study** (Esophageal Pressure directed Ventilation)
 - ARDS → reduced chest wall compliance, edema or abdominal distension
 - Transpulmonary pressure can be negative at end-expiration
 - Indicates closed or compressed airways or atelectatic lung
 - PEEP can be increased until transpulmonary pressure becomes positive at end-expiration to keep airways open (positive values do not assure open alveoli in the zones distal to the sampling catheter)
 - Single center randomized controlled trial
 - P_{oes} guided (experimental) versus ARDSNetwork (control)
 - Positive end-expiratory TPP experience higher $\text{PaO}_2/\text{FiO}_2$, better respiratory system compliance and trend toward reduced 28-day mortality
- **Goals titration of PEEP**
 - End-expiratory transpulmonary pressure between 0 and 10 cmH$_2$O (reduce cyclic alveolar collapse)
 - Maintaining end-inspiratory transpulmonary pressure ≤ 25 mc H$_2$O (reduce alveolar over distension)
- Lung ultrasound
- Physiological tests based on oxygenation
Techniques to Determine Proper PEEP

- Multiple pressure-volume curves
- Measurement of lung volume
- Use of Poes and transpulmonary pressure
- **Lung ultrasound**
 - Lung scoring based on the repeated examination of six lung regions in each lung before and after increasing PEEP
 - Equivalent to the pressure-volume curve methods
- Physiological tests based on oxygenation
Techniques to Determine Proper PEEP

- Multiple pressure-volume curves
- Measurement of lung volume
- Use of Poes and transpulmonary pressure
- Lung ultrasound
- **Physiological tests based on oxygenation**
High-Frequency Oscillatory Ventilation (HFOV)

- Theoretically ideal for lung protection in ARDS

- Effective in improving oxygenation in adults when started early

- Adults with moderate-to-severe ARDS
 - Instituted early versus LTVV
 - May increase in-hospital mortality
OSCILLATE Trial

- Multicenter, prospective, non-blinded, randomized trial
 - HFOV versus control (LTVV)
- 548 intubated pts with early moderate-severe ARDS
- Primary outcome of in-hospital mortality
 - 47% versus 35%
- Secondary outcomes
 - ICU mortality 45% vs 31%
 - 28 day mortality 40% vs 29%
 - MV in survivors 11 days vs 10 days
 - Hospital days survivors 30 days vs 25 days
- Multiple criticisms
BETA-2 AGONISTS
Beta-2 Agonists in ARDS

- Several studies shown improved physiological outcomes
 - Randomized control trial
 - IV albuterol (15 mcg/kg/hr) versus placebo
 - Less lung water (9 vs 13 mL/kg)
 - Lower plateau airway pressure (24 vs 30 cmH₂O)
 - Randomized control trial
 - Aerosolized albuterol (5 mg) or placebo q4 hours for up to 10 days
 - No differences in ventilator-free days or hospital mortality
 - Beta-agonist Lung Injury Trial (BALTI-2)
 - IV salbutamol vs placebo
 - Terminated early due to increased mortality in the salbutamol group

- Grade 1B
 - Recommend against use of beta-agonists for people with ARDS
NEUROMUSCULAR BLOCKADE
Neuromuscular Blockers (NMBs)

- Long history of use in the ICU
- Previously, no protocolized use of NMBs

- Multi-center trial in 2010
 - 340 intubated patients with severe ARDS (P/F ratio of < 150)
 - Randomized to cisatracurium besylate versus placebo for 48 hours
 - All patients received LTVV + minimum PEEP 5
 - Both groups received deep sedation
 - Adjusted 90-day in-hospital mortality rate was lower with NMB versus placebo
 - No increased neuromuscular weakness was observed
 - Increased number of ventilator-free days
Neuromuscular Blockers (NMBs)

- Possible pathways of benefit
 - Limiting lung injury arising from ventilator desynchrony
 - Increased pneumothorax seen in placebo group
 - Less biotrauma evidenced by less end-organ failure
 - Reduction in serum cytokines
 - Limits expiratory muscle function reducing respiratory system collapse and de-recruitment
 - Improved compliance
 - Improved VA matching
 - Recent studies support direct anti-inflammatory effects of blocking nicotinic acetylcholine receptor-alpha 1
PRONE POSITIONING
Prone Positioning

• Prior to 2013
 – Known that prone positioning improved oxygenation in ARDS
 – Failed to show improved mortality

• Fears and concerns over prone positioning
 – Facial edema
 – Skin breakdown (pressure necrosis)
 – Transient desaturations
 – Dislodgement of line, endotracheal tubes
 – Hemodynamic instability
Prone Positioning

- 2013 Study of Prone Positioning
 - 466 patients
 - Randomized patients to prone positioning for at least 16 hours/day versus standard positioning
 - Severe ARDS (PaO$_2$/FiO$_2$ < 150) and proned within 36 hours of intubation and after 12-24 hours of stabilization
 - LTVV and PEEP at least 5
 - 28-day mortality (32.8% versus 16% prone)
 - Benefit persisted until day 90
 - No significant difference in complications between groups
 - Except, increased rate of cardiac arrest in the supine group

 - Considerations
 - Study took place in center with experience in prone positioning
Prone Positioning

• Benefits
 – Improved lung ventilation perfusion matching
 – Improved right ventricular dysfunction
 – Recruitment of lower-lobe atelectatic lung units
 – Decreased intrapulmonary shunting
 – Improved maintenance of open lung units
 • Limiting ventilator–induced lung injury
 – Improved secretion clearance (gravitational)
FLUID MANAGEMENT
Fluid Management

- ARDS is an increased vascular permeability state
 - Hydrostatic versus oncotic pressures

- Study of 1000 patients (FACTT Trial)
 - Randomized to conservative or liberal fluid management strategy for 7 days
 - CVP < 4 mmHg versus CVP 10-14 mmHg
 - Cumulative fluid balance was -136 mL vs +6992 mL
 - Conservative group improved oxygenation index and lung injury score and increased ventilator-free days (15 vs 12) and ICU-free days (13 vs 11)
 - 60 day mortality was unchanged
 - Mean CVP remained above goal

- Grade 1C Recommendations are conservative fluid management with use of albumin and furosemide
NONINVASIVE VENTILATION & OXYGENATION
Invasive versus Noninvasive

• Majority use invasive MV for ARDS

• Who is appropriate for noninvasive ventilation
 – Hemodynamically stable
 – Easily oxygenation
 – Does not need immediate intubation
 – Intubation is not an option
 – No contraindications

• Conflicting data regarding benefits and harm
Studies on NIV

• Single-center trial of 83 patients
 – Patients requiring full face mask NIV for \(\geq 8 \) hours
 • Mild to moderate disease
 • Randomized face mask versus helmet
 • Reduced need for intubation (18% vs 62%)
 • Higher rate of ventilator-free days
 • Shorter ICU stay
 • Lower 90-day mortality without an increase in adverse effects
 – Study was stopped early so outcomes may have been exaggerated based on effect size
Studies on NIV

- Small randomized control trial of 40 patients
 - NIV versus high concentration supplemental oxygen
 - NIV arm better improvement of PaO$_2$/FiO$_2$
 - Less likely to require intubation (4.8% vs 36.8%)

- Limitations
 - Small study (size effect imprecise)
 - Selection bias by physicians based on preference for NIV
 - Caregivers were not blinded (may influence decision to intubate)
 - Exclusion criteria
 - Patients > 70 years old
 - Multiple organ failure
 - PaO$_2$/FiO$_2$ < 200
Studies on NIV

- Study of hypoxemic respiratory failure
 - NIV versus high flow nasal cannula
 - Increased mortality in association with NIV

- Etiology of potential harm
 - Higher than expected tidal volumes in NIV?

- Grade 2B NIV only in a select minority of patients with sepsis-induced ARDS
PULMONARY ARTERY CATHETERS
Swan-Ganz Catheters in ARDS

- The best available evidence strongly suggests that pulmonary artery catheters do not improve management of patients with ARDS, either with or without shock.

- Grade 1A Recommends against use of PA catheters as part of routine management of ARDS.
Trachestomy
Early vs Late Tracheostomy

- January 2015 Cochrane Review
 - All critically ill patients
 - Mortality in ≤ 10 days or > 10 days
 - 8 studies and 1977 patients
 - Early tracheostomy had lower risk of mortality
 - Did not have subgroup characteristics to determine best selection for either strategy
 - 11 early tracheostomy to prevent 1 death in late tracheostomy
 - Suggestion of benefit of time off mechanical ventilation in the early tracheostomy group
 - Higher discharge from the ICU at 28 days
 - No significant differences in pneumonia rates
LIQUID VENTILATION
Liquid Ventilation

- Oxygenation perfluorocarbon mixtures

- Types of Liquid Ventilation
 - Total Liquid Ventilation
 - Special ventilator
 - Lungs and circuit are liquid filled
 - Partial Liquid Ventilation
 - Liquid “PEEP”
 - Lungs filled with liquid, but ventilated with a gas tidal volume (conventional ventilator on top of a liquid FRC)

- Advantages
 - Improve compliance and gas distribution
 - Lower resistance to expansion (easier to distend the lung with liquid)
 - Easier to open and maintain alveolar volume with liquid than gas (less damage)
 - Alveoli are flushed of “debris” (decreases inflammation)
 - Perfluorocarbon decreases neutrophilic and macrophage chemotactic and phagocytic responses

- Experimental
INEFFECTIVE OR HARMFUL THERAPIES
Ineffective or Harmful Therapies

- N-acetylcysteine
- Procysteine
- Glutamine
- Antioxidants
 - Selenium, beta carotene, zinc, vitamin E and C
- Lisophylline
- Intravenous prostaglandin E1
- Neutrophil elastase inhibitors
- Ibuprofen
- Activated protein C (Xigris)
- Ketoconazole
- Statins
EXTRACORPOREAL MEMBRANE OXYGENATION
Introduction to ECMO

• Partial cardiopulmonary bypass
• First successful adult ECMO support was 1972
• Types of ECMO
 – Arteriovenous (AV)
 • Uses patients own blood pressure to move the blood through the circuit
 – Venovenous (VV)
 • Takes blood from a large vein and returns to a large vein
 • Does not support cardiac output
 – Venoarterial (VA)
 • Deoxygenated blood from a central vein and returns to the arterial system, usually the aorta
 • Partial cardiac output support
CESAR Trial

- Conventional ventilation versus ECMO for Severe Adults Respiratory failure
EXTRACORPORAEOAL CO₂ REMOVAL
Extracorporeal CO₂ Removal

- Veno-venous (or arterio-venous) extracorporeal device at low blood flow rates (300-1000 mL•min)
 - Traditional ECMO 3-5 L/min
 - Flow rates are similar to renal replacement therapy
 - Use smaller cannulas

- Adequate for substantial CO₂ removal but only minimal blood oxygenation

- Facilitate ultraprotective lung ventilation
 - Tidal volumes <= 4 mL•kg
Extracorporeal CO₂ Removal Studies

• Prospective cohort study [2009]
 – CO₂ removal device to reduce tidal volume to < 6 mL•kg
 – Observed improvement of morphological markers of lung protection

• Randomized control trial [2013]
 – Very low tidal volume (3 mL•kg) + arterio-venous CO₂ removal versus conventional protective ventilation
 • 79 patients
 – Safe, feasible and without physiologically relevant hypercapnia/acidosis
 – Significant reduction in analgesic and sedative use
 – Increased ratio of spontaneous breathing compared with controls
 – Serum levels of pro-inflammatory cytokine IL-6 significantly reduced
 – Overall did not reduce mechanical ventilation, ICU or hospital stay
 • Post hoc analysis indicated that in most hypoxemic patients (PaO₂/FiO₂ < 150)
 • Had significantly shorter ventilation period
Questions and Answers

THE END
References

References